Foresight Workshop

Advances in ocean biological observations – sustained system for deep-ocean meroplankton

Increasing exploration and exploitation of marine resources, as well as climate change and pollution are affecting ocean’s health. Fundamental knowledge of marine biodiversity and ecosystem functioning is therefore vital to understand the magnitude of natural and human-induced impacts in the marine environment. Advances in technology over the past four decades have enabled an unprecedent development of underwater research, extending from near shore to the deepest regions of the globe.

The role of macroalgae in the global ocean carbon budget

Recent focus on Blue Carbon strategies, including actions to mitigate and adapt to climate change through conservation and restoration of coastal vegetated habitats, have directed attention to the globally relevant role of vegetated coastal habitats in carbon sequestration in the ocean. However, while the focus has primarily been on angiosperm-dominated systems (salt-marsh, seagrass and mangroves) growing over soft sediments, recent studies have highlighted the potentially highly significant role of macroalgae in this process.

Lipids in the Ocean: Structure, function, ecological role and applications

Specialized meetings on various aspects of marine sciences on one side and lipidomics on the other already exist and respond to their respective specific needs. However, the structure of the community is such that there is often no space left for comprehensive discussions of lipidomic issues, apart from specific sessions during broader marine sciences meetings. Similarly, during lipidomic events, marine scientists tend to only meet opportunistically and have little hope of reaching the critical mass necessary to organize a session specifically dedicated to broad marine science questions.

Modelling for policy advice under a global change context

Ecosystem modelling tools are increasingly applied in the contexts of management advice, policy exploration, and environmental impact analysis under climate change scenarios. The interdisciplinary modelling required integrates a wide range of disciplines - environmental change, biochemistry and hydrology, food web dynamics, and human activities, at local and global scales, and at various time scales.

Data needs for hyperspectral detection of algal bloom diversity across the globe

Certain types of algae are known to form intense blooms at the sea surface, but their occurrence is sporadic and unpredictable. Episodic blooms not only contribute significantly to ocean biogeochemistry in terms of cycling of carbon and nitrogen, but some can also be considered harmful with production of toxins and disruption of food webs.

Ecosystem changes associated with offshore wind farms: Bridging the gap between biogeochemical effects and its repercussions for ecosystem functioning and services

Objectives

This workshop aims to address the current poor link between OWF- environment monitoring observations and the societal relevance by introducing the field of biodiversity – ecosystem function into the ecosystem services concept. The biodiversity – ecosystem function field introduces the theory and examines the mechanistic role of biodiversity in shaping ecosystem services (Duncan et al. 2015). Organisms, through their activity (filtering, burrowing, irrigating) affect the biogeochemical processes underlying ecosystem services.

Improving the visibility of ocean data from new technologies: A case study of high frequency flow cytometry

During the last 10 years, scientists have developed collaboration around the North Sea, Channel, Baltic and Mediterranean Sea, sharing experience and knowledge on online flow cytometry measurement. The recently funded EU network of coastal observations called JERICO-NEXT aims to integrate biogeochemical and biological observations for ecological assessment. In the case of flow cytometry, the quantity of data produced as well as their different format compared to the traditional approach, makes the integration even more difficult.

Predicting the future of the ocean from signatures of the past: Using marine sediment archives to understand adaptation of marine plankton to a changing environment

Objective

The invited consortium of the workshop proposed here will bring together researchers working across a range of trophic levels, from viruses to zooplankton and even fish, within the fields of genomics and ancient DNA, resurrection ecology, evolutionary biology, biodiversity and climate modelling to set a horizon for this relatively new, but rapidly developing research area. The state of the art of the field will be reviewed, and the challenges and areas of development identified.